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Abstract

Nanoparticles (NPs) formed in nonthermal plasmas
(NTPs) can have unique properties and applications.
However, modeling their growth in these environments
presents significant challenges due to the non-equilibrium
nature of NTPs, making them computationally expensive
to describe. In this work, we address the challenges as-
sociated with accelerating the estimation of parameters
needed for these models. Specifically, we explore how
different machine learning models can be tailored to im-
prove prediction outcomes. We apply these methods to
reactive classical molecular dynamics data, which capture
the processes associated with colliding silane fragments in
NTPs. These reactions exemplify processes where qual-
itative trends are clear, but their quantification is chal-
lenging, hard to generalize, and requires time-consuming
simulations. Our results demonstrate that good predic-
tion performance can be achieved when appropriate loss
functions are implemented and correct invariances are
imposed. While the diversity of molecules used in the
training set is critical for accurate prediction, our find-
ings indicate that only a fraction (15-25%) of the energy
and temperature sampling is required to achieve high lev-
els of accuracy. This suggests a substantial reduction in
computational effort is possible for similar systems.
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1 Introduction

Nonthermal plasmas (NTPs) are unique environments
where low-temperature neutral species and ions coexist
with high-temperature electrons. For this reason, these
systems have received considerable attention, especially
for synthesizing particles and nanoparticles with signifi-
cant tunability. This flexibility in the final particle prop-
erties results from an environment with enough localized
energy to cross relatively high free energy barriers while
avoiding excessive thermal energy and discouraging ag-
glomeration [1]. As a result, the synthesis of nanoparti-
cles and thin films under these conditions holds potential
applications in biomedicine [2, 3], energy [4–6], microelec-
tronics [7], and catalysis [8].

However, modeling these environments remains a sig-
nificant challenge due to the combined non-equilibrium
and multiscale nature. [9–11] Even when narrowing the
description only to a specific scale or class of processes,
such as particle growth (e.g., nucleation, coagulation, sur-
face deposition) [12–14], the accuracy of the methods de-
pends on their ability to model a variety of size- and
charge-dependent growth mechanisms. These processes,
in turn, depend on the propensity of species, generally
radicals, to form stable bonds upon collision with other
particles or surfaces. Still, these processes have been
frequently estimated using fixed values, independent of
the colliding species and energies [14], primarily due to
the complexity of obtaining a more detailed functional
form. Recently [15], we have shown how atomistic simu-
lations can capture the complex reactivity of small neu-
trals and provide parameters that can be used in reac-
tor models [16, 17]. While these previous and current
works focus on silane particles, the underlying methodol-
ogy is general and adaptable to various conditions where
species’ internal and translational energy distributions
differ. This flexibility sets our method apart from others,
such as the one recently published by Bal and Neyts [18],
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which (among other differences) does not make assump-
tions about the translational energy distribution or the
specific reaction under investigation. Due to the large
size of some involved species and the resulting (lack of)
separation of vibrational modes, we observed a variety of
competing reaction mechanisms involving a complex in-
terplay of physisorption, chemisorption, and desorption.

While very informative, deriving these reacting proba-
bilities via molecular dynamics (MD) simulations remains
time-consuming and computationally burdensome. Even
when using classical reactive MD, a timestep of the or-
der 10 as is required to guarantee correct numerical inte-
gration of the equations of motion during the reactions.
Moreover, due to numerous variables (e.g., impact param-
eter, speed distribution, surface composition) and rele-
vant species present in such reactive systems, the number
of simulations required to capture the collisions experi-
ences rapid combinatorial growth. More effective means
of deriving the collision parameters must be considered
to scale this approach. In this work, we focus on machine
learning (ML) methods, which offer the potential to for-
mulate a dependency between the system conditions and
the final collision outcome. Data-driven methods do not
remove the need for MD simulations but allow for a dras-
tic reduction in computational effort.

Recent works have used ML methods to overcome sim-
ilar combinatorial problems associated with the growth
of nanoparticles in reactive gas-phase environments, ac-
curately predicting the aggregation propensities of soot
precursors [19]. However, no existing work addresses the
same scientific questions in the context of nonthermal
plasmas. Most studies focus on predicting plasma proper-
ties [20–22] and plasma-surface interactions, from surface
deposition [11, 23–26], plasma etching [27–29], and sur-
face modification [30]. In contrast, this work examines a
scale between detailed individual reactions and simplified
larger systems, where detailed chemistry must be approx-
imated. Our focus is on particles approximately 1 nm in
diameter colliding with small reactive fragments (SiHy

and Si2Hy). Building upon previous data [15], we demon-
strate how easily computable properties can be used to
train ML models to generate predictions for new species
or mitigate the MD computational cost.

2 Methodology

2.1 Molecular Dynamics Simulations

We performed classical reactive molecular dynamics sim-
ulations to study the collisions between disilanes, Si2Hx,
and other silane clusters and molecules using the same
procedure described previously [15]. First, we indepen-
dently equilibrated both colliding species’ rotational and
vibrational modes, and then we performed microcanon-
ical simulations at a fixed impact velocity. Between 40
and 100 different collision vectors were imposed to par-
allel the line passing through the center of mass of the

two species (i.e., impact parameter = 0 or, equivalently,
impact angle = π). Simulations were performed using
LAMMPS [31] using the ReaxFF force field [32] in com-
bination with a dynamic charge equilibration model [33]
and integrated the equations of motion every 0.01 fs. To
analyze the collision outcome, we monitored the mini-
mum distance between all the atoms or only the Si atoms
of each cluster.

The conformations of the colliding species were gen-
erated from the canonical simulations at 300K, 400K,
500K, 600K, and 900K. Properties are computed by
reweighting the collisions using a Maxwell-Boltzmann dis-
tribution, which allows labeling each system with a sin-
gle temperature. For clarity, we grouped the colliding
species in two sets, labeled “clusters” and “impactors”,
but there is no physically meaningful distinction associ-
ated with each set. Molecules in the cluster set are silanes
that cover different sizes and H-coverage (i.e., Si2H6, Si4,
and Si29Hx with x = 18, 27, 31, 36), while as impactors, we
considered different disilanes (i.e., Si2Hx with x ∈ [1, 6])
in all possible hydrogen distribution (e.g., for Si2H4, we
simulated both H2Si SiH2 and HSi SiH3). The re-
sults of these simulations were combined with previously
computed data [15] to create a dataset of 390 collision
pairs based on approximately 650 000 simulations.

2.2 Machine Learning

We compared the predictive performances of seven stan-
dard ML models for predicting sticking probabilities: an
unpenalized linear model, ElasticNet, Kernel Ridge Re-
gression (KRR), Support Vector Regression (SVR), k-
nearest neighbors (KNN) [34], DeepSets [35], and Light
Gradient-Boosting Machine (LGBM) [36].

2.2.1 Input features

For model input, we generated feature vectors using pa-
rameters that describe properties likely to affect the stick-
ing probability for silane molecules [15] (i.e., H coverage,
temperature, and molecule’s size). Specifically, for each
cluster and impactor, we used the number of Si atoms, H
atoms, and a vector of the number of unpaired electrons
per Si atom (to differentiate between isomers). For the
disilanes, this two-dimensional vector indicates the num-
ber of unpaired electrons on each Si atom; in contrast,
only the total number was used for the larger clusters,
and the second element was always set to 0. For particle
a, we denote this feature vector as fa ∈ R4. Each particle
interaction has an associated translational temperature,
denoted t ∈ (0,∞). Thus, we denote the feature vector
for a pair of particles as xa,b

.
= [f⊤

a f⊤
b t]⊤ ∈ R9. These

nine features were selected because they are computed
efficiently and were expected to capture much of the rele-
vant chemistry. We normalized each training, validation,
and testing dataset so that the concatenation of the train-
ing and validation sets has a mean of 0 and a standard
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deviation of 1 for each feature.

2.2.2 Loss functions

Each plasma simulation can be interpreted as a binomial
distribution since each outcome is a Bernoulli trial for
some probability p. We use the negative log-likelihood of
the binomial distribution (B-NLL) as a loss function for
a given simulation,

ℓb(p̂,m, n)
.
= −[m log p̂+ (n−m) log(1− p̂)] , (1)

where p̂ is the predicted probability, m is the number of
events for the desired outcome (e.g., sticking), n is the
total number of events in a simulation.

We implement DeepSets with a sigmoidal activation
σ(u)

.
= (1 + e−u)−1 on the output layer where σ : R →

[0, 1] and directly optimize the B-NLL loss. Unfortu-
nately, many ML libraries do not natively support bi-
nomial loss functions. In such cases, we can rewrite the
binomial loss ℓb in terms of the logistic loss ℓl,

ℓb(p̂,m, n) = − [mℓl(p̂, 1) + (n−m)ℓl(p̂, 0)]

for ℓl(p̂, b)
.
=

{
log p̂ b = 1

log(1− p̂) b = 0
,

(2)

where b indicates a class label. This can be interpreted
as logistic regression that includes both classes for each
set of trials but weights each “pseudosample” according
to the number of positive and negative events. We use
this approach for Logistic ElasticNet and LGBM.

Another perspective is to interpret the event probabil-
ity as a scalar p ∈ [0, 1] and perform regression in logit-
space. We cannot perform unconstrained regression di-
rectly on probabilities, as the model may predict unphys-
ical values outside [0, 1]. Instead, we apply the logistic
unit (logit) σ−1(p)

.
= log(1/(1−p)) where σ−1 : [0, 1]→ R

to restrict the (untransformed) output range. Note that
{0, 1} values cannot be predicted with a finite model out-
put when using logits, so we clip the true probabilities at
[ϵ, 1 − ϵ] for some small ϵ. We refer to this loss as the
“Logit MSE” (L-MSE). To further emulate the binomial
NLL, we weigh the loss for each simulation according to
the number of trials and refer to it as the “Logit-Weighted
MSE” (LW-MSE). The LW-MSE penalizes outliers more
significantly than Binomial NLL, as seen in Figure 1. We
use the LW-MSE for the unpenalized linear model, Elas-
ticNet, KRR, and SVR, and also evaluate it on DeepSets
and LGBM.

KNN does not utilize a loss function and is automat-
ically restricted to the range [0, 1] as predictions are a
weighted average of training data points, weighted by dis-
tance. We use a “näıve” predictor as a baseline, which
predicts the mean of the training probabilities.

2.2.3 Permutation invariance

Because our two-particle systems are permutation invari-
ant, we train permutation invariant models using either
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Figure 1: B-NLL, L-MSE, and logit-transformed Huber
(L-H) losses rescaled and aligned for true Psts of a) 0.1,
b) 0.5, c) 0.9.

data manipulation or model construction.
Some ML model implementations cannot be cus-

tomized to be permutation invariant by construction, so
we must adjust the dataset rather than the model it-
self. For linear models such as OLS and ElasticNet, per-
mutation invariance can easily be achieved by defining
x̄a,b

.
= [(f⊤

a + f⊤
b )/2 t]⊤ ∈ R5, which is equivalent to

having equal model weights for the same indices of fa,f b.
Crucially, this averaging approach is only valid for linear
models and would reduce the expressiveness of nonlinear
models such as LGBM. Instead, for LGBM, we augment
the dataset to contain xa,b and xb,a. Although helpful,
this approach does not guarantee invariance, so we refer
to it as pseudo-permutation invariant. In both cases, nor-
malization is applied after transforming the training and
validation feature vectors.

Other models can be directly modified to learn permu-
tation invariant functions. KNN, KRR, and SVR all use
distance metrics to express new points as combinations of
training data points; KNN directly uses a distance metric
to select and weight neighbors, and KRR and SVR use
the RBF kernel

k(xa,b,xc,d)
.
= exp (−γd(xa,b,xc,d)) (3)

for some distance metric d : R9 × R9 → [0,∞) via the
representor theorem. For all three methods, we use the
permutation invariant distance metric

d(xa,b,xc,d)
.
= min


∥∥∥∥∥∥
fa − f c

f b − fd

t

∥∥∥∥∥∥
2

2
,

∥∥∥∥∥∥
fa − fd

f b − f c

t

∥∥∥∥∥∥
2

2

 .

(4)

This value can be interpreted as the minimum distance
across all particle permutations within xa,b and xc,d.

Finally, we use the DeepSets [35] neural network (NN)
architecture, which has the form

g

fa

f b

t

 .
= ϕη

([
ρ (ψθ(fa), ψθ(f b))

t

])
, (5)
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where ϕη : R4 → Rh, ψθ : Rh+1 → (0, 1) are neural net-
works with a hidden width of h and parameters η, θ
and ρ : R2h → Rh is a feature-wise mean or max.
This architecture is permutation invariant by construc-
tion and has been used for similar particle interaction
problems [19]. Together, these approaches make our pre-
dictions (pseudo-)permutation invariant, which improves
generalization capabilities.

2.2.4 Cross-validation

To estimate the models’ performance under different sce-
narios, we considered multiple cross-validation (CV) tech-
niques: 5-fold, leave-one-temperature-out, leave-one-im-
pactor-out, and leave-one-cluster-out. Furthermore, we
selected the model parameters using a grid search to
reduce human bias. Notably, estimating model perfor-
mance and performing model selection using the same
cross-validation splits is known to overestimate perfor-
mance and lead to biased models [37, 38]. To combat such
bias, we estimated the model performance using “nested
cross-validation.” This approach estimates model perfor-
mance using an outer CV loop, splits each training set
into an inner CV loop, and uses the inner loop to select
optimal hyperparameters for each outer fold. Specifically,
for each outer fold, we select the parameters with the low-
est average loss for the inner test datasets and report the
loss of the outer test set using these parameters. This pro-
cess, known as “nested CV” provides an almost unbiased
estimate of the true error [37].

The inner CV loop was conducted similarly to the outer
loop, with the outer training set being split for the in-
ner CV loop. For the 5-fold CV, we perform the inner
CV using another random 5-fold CV. We also perform
leave-one-out CV on the inner loop for leave-one-tem-
perature-and leave-one-cluster-out CV. However, because
there were so many impactors, the inner fold was created
by partitioning the training impactors into five folds, each
containing multiple impactors. In short, the inner loop
for parameter selection uses the same split criteria as the
outer loop; our preliminary tests show that this approach
improves generalization to unseen clusters and impactors.

We use a modified CV approach to provide train, vali-
dation, and test sets. The data is typically split into train-
ing and testing sets of relative size k− 1 and 1. However,
since the NN and LGBM utilize validation sets, we split
our inner training dataset for these models into k−2 folds
for training and one fold for validation. If a model (e.g.,
linear regression) didn’t use a validation set, we combined
the training and validation sets.

An algorithmic representation is shown in the Supple-
mental Materials (SI Algorithms 1 and 2), while tables of
the grid-searched parameters and values are included in
Appendix Section C. We estimate the performance stan-
dard deviation by performing nested CV with five ran-
dom seeds (random seeds were shared when splitting the
dataset and initializing the model states). All other pa-

rameters were set to the library defaults.

3 Results and Discussion

3.1 Molecular Simulation

Previous work has analyzed the collisions of SiHx as
a critical step for the growth of particles in silane
plasma [15]. However, larger silanes also play a role in
chemical growth despite decreasing concentration. Fig-
ure 2 shows Pst, the probability of a chemisorption or
sticking event, for the collision of Si2Hx with three of the
simulated clusters.

Figure 2: Temperature dependence of the sticking prob-
ability for collisions between different Si2Hy and a) Si4,
b) Si2H6, and c) Si29H36. Lines show the fitted trend,
described in (6). Error bars represent two standard devi-
ations. Si2Hy indicate molecules with balanced hydrogen
distribution, while unbalanced fragments are expanded
for clarity.

Similarly to previous work [15], the trends of Pst are
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well approximated by

m(T,E, b, c) = (1− c)f(T − b, E) + c , (6)

where T is the translational temperature, E is the ki-
netic energy, b and c are fitted constants, and f is the cu-
mulative distribution function of the Maxwell-Boltzmann
distribution:

f(T,E) = erf

(√
E

kBT

)
− 2√

π

√
E

kBT
exp

(
− E

kBT

)
(7)

in which kB is the Boltzmann constant and erf is the error
function.

Compared to the results of SiHy collisions, the Pst for
Si2Hy, while generally slightly higher, displays very simi-
lar trends. As expected, the sticking probability decreases
at higher temperatures, with a stronger dependency ob-
served for species with a lower number of radical elec-
trons due to their high reactivity. As before, the number
of unpaired radicals plays a crucial role in the reactivity.
However, the picture is complicated by the effect of bal-
anced vs. imbalanced hydrogens on the silane impactors.
While a hydrogen imbalance results in greater reactivity,
this effect is secondary to the overall hydrogen coverage.
Outliers like Si2H2 do not follow the expected trend, dis-
playing a lower-than-expected propensity to form bonds
at higher temperatures.

Cluster size has a relatively small effect, mostly appar-
ent when physisorption is relevant, whether as a step for
the chemisorption or as a collision outcome. By analyz-
ing the ratio between collisions that lead to chemisorption
and the chemisorption and physisorption events (see Fig-
ure D1 in the Supplementary Material), we observe that
physisorption plays an integral role in the kinetics for al-
most fully saturated species like Si2H5and Si2H4 isomers.
These reactants, which are less reactive than the more
unsaturated counterparts or require as much energy as
the fully saturated silanes, are the most likely to control
the kinetics of particle growth. It is worth noting that
the lifetime of a physisorbed pair can vary from a few to
tens of ps, even when the outcome is a chemisorption. As
a result, in an experimental setting, other processes can
occur in this timescale that the current model does not
capture.

Finally, our simulations also study Si29Hx nanoparticles
and hydrogen coverage to provide a quantitative relation-
ship of the effect of hydrogen coverage of larger NPs on
the sticking coefficients. In Figure 3, we compare sticking
coefficients with coverages of 18, 27, 31, and 36 hydrogens.
The same trends observed with other silane fragments are
evident here: increasing hydrogen coverage while holding
the temperature, impactor, and number of cluster silicon
atoms monotonically increases the sticking probability.

3.2 Machine learning models

As described in the Methodology, we performed cross-
validations using several splits to determine which envi-

Figure 3: Sticking probability vs. temperature for the
collisions between Si2H6 and Si29 cluster with different
hydrogen coverages of Si29Hx. The line represents the fit
discussed in (6), and error bars (generally smaller than
the symbols) represent two standard deviations.

ronmental settings our models could and could not gener-
alize. We test the overall capabilities of the model using
a 5-fold CV (Figure 4) and out-of-distribution general-
ization by performing leave-one-temperature-, leave-one-
impactor-, and leave-one-impactor-out CV (Figures 6 and
5, and SI Figure A1).

The binomial NLL depends on the number of trials in
each simulation and is nonzero for perfect predictions.
Furthermore, this nonzero floor is not constant and de-
pends on the true probability. Thus, comparing the bino-
mial NLL between folds may be misleading, as different
numbers of trial runs or distributions of actual probabil-
ities may dominate variations. To improve visualization,
for plotting, we use the “adjusted B-NLL”:

ℓadj(p̂,m, n)
.
=

1

n

(
ℓb (p̂,m, n)− ℓb

(m
n
,m, n

))
(8)

This loss weights all simulations equally, regardless of the
number of trials run, and subtracts the NLL of a perfect
prediction from the NLL of the actual prediction. For
similar reasons, we plot the unweighted L-MSE instead
of the LW-MSE. Unlike root mean squared error, these
metrics do not correspond to intuitive notions of distance
but still facilitate a quantitative performance compari-
son between methods. Thus, we also plot the true vs.
predicted probability for the sticking event to provide an
intuition of how individual models perform.

In the 5-fold CV setting (Figure 4), all models per-
form significantly better than the näıve model. Indeed,
Figures 4 c) and d) show almost perfect agreement be-
tween true and predicted probabilities. Furthermore, we
find that ML models can be highly robust to data sub-
sampling (Figure 4 e)). Indeed, performance does not
meaningfully decrease until less than 25% of the data is
used for training, and good performance is achieved by
training on only 15% of the data.

In leave-one-cluster-out testing (Figure 5), the models
performed well for most unsampled Si29Hx clusters but
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Figure 4: Performance of 5-fold cross-validation. a) and
b) show the average performance of each model trained
and evaluated using the adjusted B-NLL and L-MSE, re-
spectively. Black bars indicate the standard deviation
across all five folds and five random seeds. c) and d)
show the LGBM predictions for all folds and seeds using
the same loss functions as a) and b), respectively. e)
shows the adjusted B-NLL performance of the permuta-
tion invariant (dark blue) and variant (light blue) LGBM
models and the näıve model as the fraction of training
data decreases. The shaded region indicates the standard
deviation across random seeds.

not for Si2H6, likely due to the presence only in the large
cluster of low vibrational frequencies that can better ac-
commodate the collision energy. Since our training set
has four Si29Hx clusters and only one Si2Hx and one Si4Hx

clusters, it appears that the model is biased towards the
behavior of the Si29Hx clusters.

Notably, most models showed an increased error for
Si29H18. The Si29Hx clusters start with the fully satu-
rated Si29H36 molecule and become less saturated until
we get to Si29H18. Therefore, we expect the error to
be higher for Si29H36 because the model has only unsat-
urated Si29Hx clusters to train from, while for the re-
maining Si29Hx clusters, we expected similar errors. The
slightly abnormal behavior of the predictions for colli-
sions involving Si29H18 suggests interactions dominated
by different reaction pathways, possibly related to H iso-
merization. The results for the impactors are similar (see
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Figure 5: Performance of leave-one-cluster-out CV. a)
and b) show the average performance of each model
trained and evaluated using the adjusted B-NLL and L-
MSE, respectively. Black bars indicate the standard de-
viation across random seeds. c) and d) show the predic-
tions of LGBM for all folds and random seeds using the
same loss functions as a) and b), respectively. Predic-
tions for Si29H18 are highlighted in red. The losses for
SVR Si29H31 and Si29H36 in b) are 23.5 and 41.5 but are
truncated for visualization purposes.

Appendix Section A). Overall, the models are most effec-
tive when making predictions for similar-sized molecules,
at least when provided with such a limited selection.

While the natural conclusion about the need for a wider
variety of cluster sizes is correct, it should also be con-
fronted with the fact that not all atomic arrangements are
equally stable. The lower energy associated with specific
structures (e.g., spherical, truncated polyhedrons) may
result in some clustering of the dominant reactive path-
ways, which may complicate even a model trained on a
more varied dataset.

A similar analysis for temperature is shown in Figure 6,
where we observe that the model performance is rela-
tively consistent except at the lowest temperature. The
näıve loss is highest for 300K, and most models (except
DeepSets) perform poorly for 300K and even worse for
900K. While we could not determine the reason for this
difference beyond the difficulty of extrapolation compared
to interpolation (which should affect the 900K), it should
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Figure 6: Performance of leave-one-temperature-out CV.
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trained and evaluated using the adjusted B-NLL and L-
MSE, respectively. c) and d) show the predictions of
DeepSets for all folds and random seeds using the same
loss functions as a) and b), respectively. The predictions
for 300K are highlighted in red.

be noted that physisorption plays a much more significant
role at this temperature, hinting again at the model sen-
sitivity to underlying physical and chemical processes.

As shown in Figure 2 and SI Figure D1, Pst is nearly
constant between 700K and 900K. Because LGBM
learns piecewise-constant functions, it also performs con-
stant extrapolations, which is ideal in this setting. How-
ever, Pst is hardly constant between 300K and 400K,
meaning that constant extrapolations perform poorly.
This is why other methods, such as DeepSets, outperform
LGBM when extrapolating to lower temperatures and
why LGBM outperforms all other methods but DeepSets
when extrapolating to higher temperatures.

Notably, we find that permutation-variance signifi-
cantly impacts the generalization capabilities of all mod-
els, as shown in Figure 5. This effect is particularly
strong for Si2H6, Si4, Si29H27. We suspect that this is
partial because Si4 and Si2H6 are more similar in size
to the impactors than the other clusters. As a result,
a permutation-variant model learns that the larger par-
ticles are usually on one side, which biases the predic-
tions. Indeed, comparing Figures 5 and 7, we find that

permutation-variant models achieve surprisingly high and
low performance depending on the particle being held
out, indicating a tendency to fit and an inability to
generalize. Additionally, panels c) and f) in Figure 8
show that permutation-variant models make highly in-
consistent predictions for each permutation of clusters
and impactors. Indeed, predictions are inconsistent be-
tween permutations and are inaccurate unless the model
is trained and tested on the same ordering of clusters and
impactors. This variability demonstrates the importance
of permutation-invariance for accurate modeling of Pst in
nonthermal plasmas.
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Figure 7: Performance of leave-one-cluster-out CV with
permutation-variant models. a) and b) show the average
performance of each model trained and evaluated using
the adjusted B-NLL and L-MSE, respectively. Black bars
indicate the standard deviation across random seeds. c)
and d) show the LGBM (Var) predictions for each fold
and random seed using the same loss functions as a) and
b), respectively. Here, we permute the particles before
applying the model. Predictions for Si2H6 are highlighted
in red.

Visual inspection of true vs. predicted probabilities
shows that the B-NLL provides more robust predictions
than the L-MSE. Both losses achieve good empirical per-
formance, indicating that the L-MSE may be suitable
when a binomial NLL loss cannot easily be added to a
model. However, the B-NLL achieves more accurate pre-
dictions overall due to its less extreme penalization of out-
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trained using the LW-MSE. Predictions for SiH3 Si and
Si2H4 are highlighted in blue and red, respectively. All
random seeds are shown.

liers. For example, compare the predictions for LGBM
trained with each loss on leave-one-impactor-out cross-
validation: Although the worst-performing impactor is
equally bad for both B-NLL and L-MSE, the error is
lower for intermediately-performing impactors such as
SiH3 SiH and Si2H4 when considering the B-NLL (SI
Figure A1). This is reminiscent of robust regression,
where robust losses (e.g., Huber loss) are chosen because
they do not over-emphasize outliers as significantly as the
squared error. Indeed, the B-NLL loss sits between the
L-MSE and logit-transformed Huber Loss (L-H) in Fig-
ure 1. Thus, we recommend using the Binomial NLL
when possible, and we suspect that further improvements
are possible using robust binomial or logistic regression
approaches [39].

We find that, in nearly all settings, ML models sig-
nificantly outperform the näıve prediction. However, we
note that models generally perform best when interpo-
lating (rather than extrapolating) for temperature and
that better performance may be achieved at higher tem-
peratures. Additionally, DeepSets excels at extrapolating
to unseen temperatures, and LGBM is the most consis-
tent at successfully extrapolating to unseen structures.
Finally, the loss function and permutation invariance can
significantly affect model performance and generalization.
This result suggests that, given a correctly chosen model
architecture, we can focus our simulations on a small sub-
set of important conditions (e.g., edge temperatures) to
derive Pst across many diverse settings effectively.

4 Conclusions

Particle growth in a high-energy gas phase, such as dur-
ing combustion or in nonthermal plasma, is a complex,
non-linear process that requires accurate modeling. Even
when narrowing the scope to a specific system and set
of reactions, capturing the rates and mechanism remains
computationally challenging, even using classical approx-
imations. While such detailed descriptions are not always
necessary, a more nuanced description of the reaction
rates can benefit several contexts, such as more accurate
reaction rates, hyper-doping, and core-shell nanoparticle
production. The subtle differences between the various
Si2Hy species simulated in this paper, as well as SiHy, are
symptomatic of a series of competing phenomena (e.g.,
physisorption, energy redistribution) that cannot be eas-
ily generalized and that can lead to systematic biases
when ignored.

To address this, we have focused on training and testing
several permutation-invariant ML models to reduce the
computational effort associated with these simulations.
Our results show that nearly 90% of interactions can
be predicted using machine learning without significantly
impacting accuracy. Furthermore, we have demonstrated
the importance of principled loss functions, model archi-
tectures, and sampling procedures for deriving accurate
and reliable predictions. Figure 4 shows that, in general,
simple system-specific features are descriptive enough to
predict sticking probabilities for silane nanoparticles in
nonthermal plasma after training on only a fraction of
simulated interactions. Additionally, Figure 6 shows that
our model can extrapolate and interpolate quite well for
unsampled temperatures. However, Figure 5 indicates
our specific combination of ML models and input features
has difficulty extrapolating to nanoparticles with different
degrees of saturation.

These findings demonstrate that ML methods can sig-
nificantly reduce the computational cost of computing the
results of complex reactions in nonthermal plasma and
other difficult-to-model systems. However, careful selec-
tion of model architecture and training data is crucial
to ensure the generalizability of predictions. Based on
our results, we conclude that the most effective accel-
eration method involves simulating a subset of particles
across a range of temperatures (especially the upper and
lower bounds of the expected range), maintaining a bal-
ance of relevant molecular properties (e.g., H-saturation
in this case) in the training set, and then training a
permutation-invariant ML model using the binomial neg-
ative log-likelihood.

While this study focused on the data collected for a
specific system, namely the sticking probability of silanes
computed through classical reactive molecular dynamics,
the overall approach, both molecular dynamics simula-
tions and analysis of ML models, is relatively general.
As such, we expect that similar methods can be readily
adapted to generate more computationally efficient and
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realistic growth parameters for NTPs, thus improving the
efficiency and accuracy of simulations.
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A Leave Impactor Out
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Figure A1: Performance of leave-one-impactor-out CV. a) and b) show the average performance of each model
trained and evaluated using the adjusted B-NLL and L-MSE, respectively. Black bars indicate the standard deviation
across random seeds.

For leave-one-impactor-out (SI Figure A1), some models perform especially poorly for SiH, SiH2, SiH3 Si, and
SiH3 SiH. There are several potential explanations for this. One is that the näıve prediction error for these particles
is already significantly lower than the other particles, leaving less room for improvement. For a couple of impactors,
namely SiH4 and SiH3 SiH3, most models had nearly double the error as they did for other impactors. This may be
caused by overfitting due to the large amount of remaining data for partially saturated molecules, suggesting that
optimal training data would contain a higher percentage of fully saturated molecules. Alternatively, it could simply
mean that the sticking probabilities for this molecule are outliers. Regardless, DeepSets (and LGBM) significantly
outperform the näıve model in all (most) cases.

B CV Method

In Supplementary Algorithms 1 and 2, we include the details of the cross-validation methods used in this work.
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Input : Dataset D, parameter grid G, parametric model fθ,g
Output: Performance metric for each outer testing set
// Arrays holding outer test metric

µ← [];
foreach g ∈ G do

foreach k ∈ [5] do
k′ ← (k + 1) mod 5;
// Outer cross-validation loop

Douter
train ← D split into 5 folds with the k and k′-th folds removed;

Douter
test ← k-th fold of D;

Douter
val ← k′-th fold of D;

// Array of losses

ηg ← [];
foreach j ∈ [5] do

// Inner cross-validation loop

Dinner
train ← Douter

train split into 5 folds with the j and j′-th folds removed;
Dinner

test ← j-th fold of Douter
train ;

Dinner
val ← j′-th fold of Douter

train ;
θ∗ ← argminθ fθ,g with training and validation sets Dinner

train and Dinner
train ;

Append the loss computed on Dinner
test to ηg;

end
// Select the optimal parameters

g∗ ← argming
∑
ηg/5;

// Use these parameters to retrain the model

θ∗ ← argminθ fθ,g∗ with training and validation sets Douter
train and Douter

train ;
Append the loss computed on Douter

test to µ;

end

end
// Return array of performance metrics on the test sets

return µ
Algorithm B1: Grid search with nested 5-fold cross-validation for one seed.
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Input : Dataset D, parameter grid G, set of groups C, parametric model fθ,g
Output: Performance metric for each outer testing set
// Arrays holding outer test metric

µ← [];
foreach g,∈ G do

foreach k ∈ [|C|] do
k′ ← (k + 1) mod |C|;
// Outer cross-validation loop

Douter
train ← D split into groups from C with the k and k′-th groups removed;

Douter
test ← k-th group of D;

Douter
val ← k′-th group of D;

// Array of losses

ηg ← [];
foreach j ∈ [|C \ {k, k′} |] do

// Inner cross-validation loop

Dinner
train ← Douter

train split into groups from C \ {k, k′} with the j and j′-th groups removed;
Dinner

test ← j-th group of Douter
train ;

Dinner
val ← j′-th group of Douter

train ;
θ∗ ← argminθ fθ,g with training and validation sets Dinner

train and Dinner
train ;

Append the loss computed on Dinner
test to ηg;

end
// Select the optimal parameters

g∗ ← argming
∑
ηg/|C \ {k, k′} |;

// Use these parameters to retrain the model

θ∗ ← argminθ fθ,g∗ with training and validation sets Douter
train and Douter

train ;
Append the loss computed on Douter

test to µ;

end

end
// Return array of performance metrics on the test sets

return µ
Algorithm B2: Grid search with nested leave-x-out cross-validation for one seed. In our setting, a “group”
may be a cluster, impactor, or temperature. When |C| is large, we instead let j, j′ be sets of groups instead of
individual groups to reduce runtime.
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C Grid Search

Parameters used for model selection in the inner 5-fold cross-validation described in the Methods, Section 3.2.

Parameter Name Values
Epochs 100 000
Early stopping epochs 1 000
Activation function relu

Batch size 64
Width {64, 128}
Depth of each subnetwork {2, 3}
Learning rate 0.001
Aggregation function ρ {mean, max}
Optimizer adam

Table C1: Grid search parameters for DeepSets

Parameter Name Values
α (ℓ1, ℓ2 penalty weight) {0.0001, 0.001, 0.01, 0.1, 1, 10}
ℓ1 ratio {0, 0.25, 0.5, 0.75, 1}
Maximum iterations 10 000 000

Table C2: Grid search parameters for ElasticNet (LW-MSE)

Parameter Name Values
C (regularization) {0.1, 1, 10, 100, 1 000}
ε (tube) {0.0001, 0.001, 0.01, 0.1, 1}
γ (scale for RBF kernel) {0.01, 0.1, 1, 10}

Table C3: Grid search parameters for SVR

Parameter Name Values
α (regularization) {0.01, 0.1, 1, 10, 100}
γ (scale for RBF kernel) {0.01, 0.1, 1, 10, 100}

Table C4: Grid search parameters for KRR

Parameter Name Values
Neighbors {3, 6, 9}
Weighting method {uniform, distance}
p (for the ℓp-norm distance) {1, 2}

Table C5: Grid search parameters for KNN

Parameter Name Values
Number of estimators {100, 1 000}
alpha (ℓ1 regularization) {0, 0.1, 1}
λ (ℓ2 regularization) {0, 0.1, 1.0}

Table C6: Grid search parameters for LGBM
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Parameter Name Values
C (inverse of regularization strength) {0.01, 0.1, 1.0}
ℓ1 ratio {0, 0.25, 0.5, 0.75, 1}
Solver saga

Penalty elasticnet

Table C7: Grid search parameters for ElasticNet (Binomial loss via Logistic Regression)

D MD additional results
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Figure D1: Fraction of chemisorption sticking events between Si29H36 and different Si2Hx silicon fragments at various
temperatures.
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E True vs. Predicted values

Here, we plot each cross-validation procedure’s true vs. predicted sticking probability. We plot the test points for
every cross-validation loop that used the selected parameters.
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Figure E1: True vs. predicted probabilities for each model using nested five-fold cross-validation and the Binomial
loss.
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Figure E2: True vs. predicted probabilities for each model using nested five-fold cross-validation and the LW-MSE
loss.
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Figure E3: True vs. predicted probabilities for each model using nested leave-one-cluster-out cross-validation
and the Binomial loss.
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Figure E4: True vs. predicted probabilities for each model using nested leave-one-cluster-out cross-validation
and the LW-MSE loss.
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Figure E5: True vs. predicted probabilities for each model using nested leave-one-temperature-out cross-
validation and the Binomial loss.
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Figure E6: True vs. predicted probabilities for each model using nested leave-one-temperature-out cross-
validation and the LW-MSE loss.
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Figure E7: True vs. predicted probabilities for each model using nested leave-one-impactor-out cross-validation
and the Binomial loss.
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Figure E8: True vs. predicted probabilities for each model using nested leave-one-impactor-out cross-validation
and the LW-MSE loss.
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F Example Input and Output

Cluster Descriptors Impactor Descriptors Environmental Descriptors Outputs
#Si #h #e1 #e2 #Si #h #e1 #e2 Temperature (K) Probability
4 0 8 0 1 1 3 0 300 0.979
2 6 0 0 1 4 0 0 600 0.000
...

...
...

...
...

...
...

...
...

...

Table F1: Example inputs and outputs for the machine learning models (assuming no pre-processing). # Si and
# h indicate the number of silicon and hydrogen atoms, respectively. # e1 and # e2 indicate the first and second
elements in the vector #e describing the number of unpaired electrons per silicon atom.
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