Current as of 2024/03/06mattrmd@umich.edu mraymond.info

Matt Raymond ML, Nanochemistry, Computer Science

Education	 University of Michigan Ph.D. Signal/Image Processing and Machine Learning GPA: 3.92 Co-advised by Drs. Angela Violi and Clayton Scott President of the student signal processing seminar: websites.umich.edu/~speecsseminar Thesis Topic: Generative Modeling of Nanoparticles Via Transfer Learning 	Ann Arbor, MI 08/22–04/26	
	 University of Michigan M.Sc. Computer Science GPA: 3.91 Member of the VioliGroup computational biochemistry lab (3 semesters, 2 summers) President of the Machine Learning Theory Reading Group, 1 semester 	Ann Arbor, MI 08/20–04/22	
	 Chapman University B.Sc. Computer Science, Music Minor GPA: 3.86 Member of the Provost List, 8 semesters Recipient of the Chancellor's Scholarship, 8 semesters Tutor and Supplemental Instructor for Computer Science and Math, 4 semesters 	Orange, CA 08/16–05/20	
Papers	 Machine Learning Models for Nanoparticle Growth in Nonthermal Plasma Ongoing <i>TBD</i> Develop surrogate ML models for estimating sticking coefficients of silane nanoparticles in nonthermal plasma Supervised undergraduate students Jonathan Lin and Zewei Yu Currently cleaning results and preparing paper for publication 		
	Multitask Learning of Universal Features for Chemistry Datasets Ongoing TBD • Develop novel multitask impurity function for gradient boosted trees • Extend Scikit-Learn to include our method (using Python and Cython) • Track experiments using Data Version Control and test using PyTest • Outperform MultiBoost and Dirty LASSO on 7 diverse chemistry datasets, including proteins, nanoparticles, and small molecules • Show that multiple chemical scales can be represented using a few universal features Domain-Agnostic Predictions of Nanoscale Interactions in Proteins and Nanoparticles 04/23 Nature Computational Science (cover Article) • Developed a Deep Learning framework for predicting generalized nanoscale interactions		
	 Implemented permutation-invariant Neural Network using Tensorflow (TF) Migrated competitors code from TensorFlow (TF) 1 to TF 2 for testing Paper DOI: 10.1038/s43588-023-00438-x, Code DOI: 10.24433/CO.8157811.v1 		
Conferences	Joint Optimization of Piecewise Linear Ensembles Michigan Student Symposium for Interdisciplinary Statistical Sciences	28/03/24	
	Hybrid MD-ML for Efficient Modeling of Particle Growth in Non-Thermal Plas APS Annual Gaseous Electronics Meeting	ma 2023	
Posters	 A Taste of Your Own Medicine: Tracing Butyrate Production in The Gut University of Michigan EHAIL Symposium Bacterial butyrate production is associated with improved gut health, but the mechanisms are not well understood 	09/23	

	 Analyzed proprietary gut microbiome data from Michigan Medicine using Python Utilized Fused Graphical LASSO to identify microbial interactions Recovered known interactions and identified novel interactions for <i>in vitro</i> testing 	
Work Experience	 Directed Study & Research Dr. Scott and Dr. Violi Perform novel research in sparse structured multitask feature selection Advise computational biochemists on machine learning methodology and literature Supervise student researchers; Geometric Deep Learning and Deep Gaussian Processes 	01/21–present
	 Instrument Programmer Lotus Instruments Developed controls for government-contracted, custom gas chromatography instruments Analyzed documentation and created custom libraries for serial data transfer 	Long Beach, CA 09/19–11/19
	 Software Engineering Intern Toyoda Gosei Saved 2,000 man-hours and \$60,000 per year through automated purchase order tracking Implemented a web-based asset tracking software using full-stack ASP.NET Collaborated with Cost Management to solidify requirements and return on investment 	Troy, MI 05/19–08/19
Books	 Linear Algebra for Data Science, Machine Learning, and Signal Processing Cambridge University Press Proofread and edited textbook draft for Dr. Jeffery Fessler Independently verified proofs and suggested improvements for clarity and correctness Caught IATEX typesetting errors Available 2024 from Cambridge University Press 	Ann Arbor, MI 05/23–09/23
Projects	 The Implicit Bias of Gradient Descent on Separable Multiclass Data U-M Course: EECS 598, 559 Developed a conjecture and proof sketch for extending The Implicit Bias of Gradient Descent on Separable Data to include multiclass PERM losses Showed numerically that our conjecture holds for certain well-known loss functions 	Ann Arbor, MI 12/22, 05/23
	 Real-Time Distributed Learning in Connected & Autonomous Vehicles (CAVs) U-M Course: EECS 571 Designed distributed learning protocol for sparse gradient propagation Implemented simulated learning environment in Tensorflow Demonstrated superior generalization, with fewer assumptions than Federated Learning 	Ann Arbor, MI 12/21
	 Domain Exploration Through Artificial Curiosity U-M Course: EECS 545 Developed simulated Martian terrain for training and evaluation Beginning with Shmidhuber's theoretical basis for artificial curiosity, developed an implementation using convolutional auto-encoders Defined heuristic "Explorational Value" for evaluating path explored by model Performed evaluation against naive models to illustrate effectiveness of artificial curiosity 	Ann Arbor, MI 12/20
	 Needlecast: On-the-Fly Reconfiguration of Spacecraft Flight Software U-M Course: EECS 587 Collaborated with NASA staff to draft specifications for protocols Designed a library for booting NASA core Flight System (cFS) applications on-the-fly Implemented Needlecast as a plug-and-play header file for NASA core cFE Developed a simulated network switch and web interface for straightforward debugging 	Ann Arbor, MI 12/20
	 AI-Driven Contemporary Archaeology for The International Space Station U-M Course: EECS 587 Analyzed project requirements with Dr. Walsh (co-PI of ISS Archeology) Compiled facial training dataset for 240 ISS astronauts Utilized convolutional neural networks to label astronauts' faces in NASA photo archives 	Orange, CA 01/20